Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
PLoS One ; 18(11): e0294133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37943741

RESUMO

Longitudinal, community-based sampling is important for understanding prevalence and transmission of respiratory pathogens. Using a minimally invasive sampling method, the FAMILY Micro study monitored the oral, nasal and hand microbiota of families for 6 months. Here, we explore participant experiences and opinions. A mixed methods approach was utilised. A quantitative questionnaire was completed after every sampling timepoint to report levels of discomfort and pain, as well as time taken to collect samples. Participants were also invited to discuss their experiences in a qualitative structured exit interview. We received questionnaires from 36 families. Most adults and children >5y experienced no pain (94% and 70%) and little discomfort (73% and 47% no discomfort) regardless of sample type, whereas children ≤5y experienced variable levels of pain and discomfort (48% no pain but 14% hurts even more, whole lot or worst; 38% no discomfort but 33% moderate, severe, or extreme discomfort). The time taken for saliva and hand sampling decreased over the study. We conducted interviews with 24 families. Families found the sampling method straightforward, and adults and children >5y preferred nasal sampling using a synthetic absorptive matrix over nasopharyngeal swabs. It remained challenging for families to fit sampling into their busy schedules. Adequate fridge/freezer space and regular sample pick-ups were found to be important factors for feasibility. Messaging apps proved extremely effective for engaging with participants. Our findings provide key information to inform the design of future studies, specifically that self-sampling at home using minimally invasive procedures is feasible in a family context.


Assuntos
Dor , Manejo de Espécimes , Adulto , Criança , Humanos , Estudos de Viabilidade , Inquéritos e Questionários , Reino Unido
2.
Nat Commun ; 14(1): 6815, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884506

RESUMO

Respiratory mucosal immunity induced by vaccination is vital for protection from coronavirus infection in animal models. In humans, the capacity of peripheral vaccination to generate sustained immunity in the lung mucosa, and how this is influenced by prior SARS-CoV-2 infection, is unknown. Here we show using bronchoalveolar lavage samples that donors with history of both infection and vaccination have more airway mucosal SARS-CoV-2 antibodies and memory B cells than those only vaccinated. Infection also induces populations of airway spike-specific memory CD4+ and CD8+ T cells that are not expanded by vaccination alone. Airway mucosal T cells induced by infection have a distinct hierarchy of antigen specificity compared to the periphery. Spike-specific T cells persist in the lung mucosa for 7 months after the last immunising event. Thus, peripheral vaccination alone does not appear to induce durable lung mucosal immunity against SARS-CoV-2, supporting an argument for the need for vaccines targeting the airways.


Assuntos
COVID-19 , Memória Imunológica , Animais , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , Mucosa Respiratória , Vacinação , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus
3.
Commun Biol ; 6(1): 1095, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898698

RESUMO

Bacterial capsular polysaccharides are important vaccine immunogens. However, the study of polysaccharide-specific immune responses has been hindered by technical restrictions. Here, we developed and validated a high-throughput method to analyse antigen-specific B cells using combinatorial staining with fluorescently-labelled capsular polysaccharide multimers. Concurrent staining of 25 cellular markers further enables the in-depth characterization of polysaccharide-specific cells. We used this assay to simultaneously analyse 14 Streptococcus pneumoniae or 5 Streptococcus agalactiae serotype-specific B cell populations. The phenotype of polysaccharide-specific B cells was associated with serotype specificity, vaccination history and donor population. For example, we observed a link between non-class switched (IgM+) memory B cells and vaccine-inefficient S. pneumoniae serotypes 1 and 3. Moreover, B cells had increased activation in donors from South Africa, which has high-incidence of S. agalactiae invasive disease, compared to Dutch donors. This assay allows for the characterization of heterogeneity in B cell immunity that may underlie immunization efficacy.


Assuntos
Imunização , Vacinas , Citometria de Fluxo , Polissacarídeos Bacterianos , Imunidade
4.
Microbiol Spectr ; : e0382022, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698406

RESUMO

Our overall understanding of the developmental biology of malaria parasites has been greatly enhanced by recent advances in transcriptomic analysis. However, most of these investigations rely on laboratory strains (LS) that were adapted into in vitro culture many years ago, and the transcriptomes of clinical isolates (CI) circulating in human populations have not been assessed. In this study, RNA-seq was used to compare the global transcriptome of mid-stage gametocytes derived from three short-term cultured CI, with gametocytes derived from the NF54 reference laboratory strain. The core transcriptome appeared to be consistent between CI- and LS-derived gametocyte preparations, but some important differences were also observed. A majority of gametocyte-specific genes (43/53) appear to have relatively higher expression in CI-derived gametocytes than in LS-derived gametocytes, but a K-means clustering analysis showed that genes involved in flagellum- and microtubule-based processes (movement/motility) were more abundant in both groups, albeit with some differences between them. In addition, gametocytes from one CI described as CI group II gametocytes (CI:GGII) showed gene expression variation in the form of reduced gametocyte-specific gene expression compared to the other two CI-derived gametocytes (CI gametocyte group I, CI:GGI), although the mixed developmental stages used in our study is a potential confounder, only partially mitigated by the inclusion of multiple replicates for each CI. Overall, our study suggests that there may be subtle differences in the gene expression profiles of mid-stage gametocytes from CI relative to the NF54 reference strain of Plasmodium falciparum. Thus, it is necessary to deploy gametocyte-producing clinical parasite isolates to fully understand the diversity of gene expression strategies that may occur during the sequestered development of parasite sexual stages. IMPORTANCE Maturing gametocytes of Plasmodium falciparum are known to sequester away from peripheral circulation into the bone marrow until they are mature. Blocking gametocyte sequestration can prevent malaria transmission from humans to mosquitoes, but most studies aim to understand gametocyte development utilizing long-term adapted laboratory lines instead of clinical isolates. This is a particular issue for our understanding of the sexual stages, which are known to decrease rapidly during adaptation to long-term culture, meaning that many LS are unable to produce transmissible gametocytes. Using RNA-seq, we investigated the global transcriptome of mid-stage gametocytes derived from three clinical isolates and a reference strain (NF54). This identified important differences in gene expression profiles between immature gametocytes of CI and the NF54 reference strain of P. falciparum, suggesting increased investment in gametocytogenesis in clinical isolates. Our transcriptomic data highlight the use of clinical isolates in studying the morphological, cellular features and molecular biology of gametocytes.

5.
Infect Drug Resist ; 16: 3019-3028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215303

RESUMO

Purpose: To evaluate the role of C-reactive protein (CRP) in predicting severe COVID-19 patients. Methods: A prospective observational cohort study was conducted from July 15 to October 28, 2020, at Kuyha COVID-19 isolation and treatment center hospital, Mekelle City, Northern Ethiopia. A total of 670 blood samples were collected serially. SARS-CoV-2 infection was confirmed by RT-PCR from nasopharyngeal swabs and CRP concentration was determined using Cobas Integra 400 Plus (Roche). Data were analyzed using STATA version 14. P-value <0.05 was considered statistically significant. Results: Overall, COVID-19 patients had significantly elevated CRP at baseline when compared to PCR-negative controls [median 11.1 (IQR: 2.0-127.8) mg/L vs 0.9 (IQR: 0.5-1.9) mg/L; p=0.0004)]. Those with severe COVID-19 clinical presentation had significantly higher median CRP levels compared to those with non-severe cases [166.1 (IQR: 48.6-332.5) mg/L vs 2.4 (IQR: 1.2-7.6) mg/L; p<0.00001)]. Moreover, COVID-19 patients exhibited higher median CRP levels at baseline [58 (IQR: 2.0-127.8) mg/L] that decreased significantly to 2.4 (IQR: 1.4-3.9) mg/L after 40 days after symptom onset (p<0.0001). Performance of CRP levels determined using ROC analysis distinguished severe from non-severe COVID-19 patients, with an AUC value of 0.83 (95% CI: 0.73-0.91; p=0.001; 77.4% sensitivity and 89.4% specificity). In multivariable analysis, CRP levels above 30 mg/L were significantly associated with an increased risk of developing severe COVID-19 for those who have higher ages and comorbidities (ARR 3.99, 95% CI: 1.35-11.82; p=0.013). Conclusion: CRP was found to be an independent determinant factor for severe COVID-19 patients. Therefore, CRP levels in COVID-19 patients in African settings may provide a simple, prompt, and inexpensive assessment of the severity status at baseline and monitoring of treatment outcomes.

6.
Parasite Epidemiol Control ; 19: e00276, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36263093

RESUMO

Background: Over 90% of severe malaria (SM) cases occur in African children. Parenteral artesunate is currently the recommended treatment for SM. Studies of parasite clearance in paediatric SM cases are needed for assessment of therapeutic outcomes but are lacking in Africa. Methods: Severe malaria patients were recruited in the children's emergency ward at Ho Teaching Hospital, Ghana, in 2018. Blood samples were taken upon admission, every 24 h for 3 days and 1 week after treatment, and DNA extracted. Parasitaemia and parasite densities were performed by microscopy at enrolment and the follow-up days wherever possible. Relative parasite density was measured at each timepoint by duplex qPCR and parameters of parasite clearance estimated. Results: Of 25 evaluable SM patients, clearance of qPCR-detectable parasites occurred within 48 h for 17 patients, but three out of the remaining eight were still qPCR-positive on day 3. Increased time to parasite clearance was seen in children ≥5 years old, those with lower haemoglobin levels and those with a high number of previous malaria diagnoses, but these associations were not statistically significant. Conclusion: We examined parasite clearance dynamics among paediatric cases of SM. Our observations suggest that daily sampling for qPCR estimation of P. falciparum peripheral density is a useful method for assessing treatment response in hospitalised SM cases. The study demonstrated varied parasite clearance response, thus illuminating the complex nature of the mechanism in this important patient group, and further investigations utilizing larger sample sizes are needed to confirm our findings.

8.
PLoS One ; 17(3): e0263627, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320286

RESUMO

BACKGROUND: Serological testing for SARS-CoV-2 plays an important role for epidemiological studies, in aiding the diagnosis of COVID-19, and assess vaccine responses. Little is known on dynamics of SARS-CoV-2 serology in African settings. Here, we aimed to characterize the longitudinal antibody response profile to SARS-CoV-2 in Ethiopia. METHODS: In this prospective study, a total of 102 PCR-confirmed COVID-19 patients were enrolled. We obtained 802 plasma samples collected serially. SARS-CoV-2 antibodies were determined using four lateral flow immune-assays (LFIAs), and an electrochemiluminescent immunoassay. We determined longitudinal antibody response to SARS-CoV-2 as well as seroconversion dynamics. RESULTS: Serological positivity rate ranged between 12%-91%, depending on timing after symptom onset. There was no difference in positivity rate between severe and non-severe COVID-19 cases. The specificity ranged between 90%-97%. Agreement between different assays ranged between 84%-92%. The estimated positive predictive value (PPV) for IgM or IgG in a scenario with seroprevalence at 5% varies from 33% to 58%. Nonetheless, when the population seroprevalence increases to 25% and 50%, there is a corresponding increases in the estimated PPVs. The estimated negative-predictive value (NPV) in a low seroprevalence scenario (5%) is high (>99%). However, the estimated NPV in a high seroprevalence scenario (50%) for IgM or IgG is reduced significantly to 80% to 85%. Overall, 28/102 (27.5%) seroconverted by one or more assays tested, within a median time of 11 (IQR: 9-15) days post symptom onset. The median seroconversion time among symptomatic cases tended to be shorter when compared to asymptomatic patients [9 (IQR: 6-11) vs. 15 (IQR: 13-21) days; p = 0.002]. Overall, seroconversion reached 100% 5.5 weeks after the onset of symptoms. Notably, of the remaining 74 COVID-19 patients included in the cohort, 64 (62.8%) were positive for antibody at the time of enrollment, and 10 (9.8%) patients failed to mount a detectable antibody response by any of the assays tested during follow-up. CONCLUSIONS: Longitudinal assessment of antibody response in African COVID-19 patients revealed heterogeneous responses. This underscores the need for a comprehensive evaluation of seroassays before implementation. Factors associated with failure to seroconvert needs further research.


Assuntos
Formação de Anticorpos , COVID-19/imunologia , SARS-CoV-2/imunologia , Adulto , Anticorpos Antivirais/imunologia , COVID-19/epidemiologia , Teste Sorológico para COVID-19/métodos , Etiópia/epidemiologia , Feminino , Humanos , Imunoensaio , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente , Estudos Prospectivos , Estudos Soroepidemiológicos
9.
J Clin Invest ; 132(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35139037

RESUMO

BackgroundAlthough recent epidemiological data suggest that pneumococci may contribute to the risk of SARS-CoV-2 disease, cases of coinfection with Streptococcus pneumoniae in patients with coronavirus disease 2019 (COVID-19) during hospitalization have been reported infrequently. This apparent contradiction may be explained by interactions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and pneumococci in the upper airway, resulting in the escape of SARS-CoV-2 from protective host immune responses.MethodsHere, we investigated the relationship of these 2 respiratory pathogens in 2 distinct cohorts of health care workers with asymptomatic or mildly symptomatic SARS-CoV-2 infection identified by systematic screening and patients with moderate to severe disease who presented to the hospital. We assessed the effect of coinfection on host antibody, cellular, and inflammatory responses to the virus.ResultsIn both cohorts, pneumococcal colonization was associated with diminished antiviral immune responses, which primarily affected mucosal IgA levels among individuals with mild or asymptomatic infection and cellular memory responses in infected patients.ConclusionOur findings suggest that S. pneumoniae impair host immunity to SARS-CoV-2 and raise the question of whether pneumococcal carriage also enables immune escape of other respiratory viruses and facilitates reinfection.Trial registrationISRCTN89159899 (FASTER study) and ClinicalTrials.gov NCT03502291 (LAIV study).


Assuntos
COVID-19 , SARS-CoV-2 , Pessoal de Saúde , Humanos , Imunidade , Streptococcus pneumoniae
10.
EClinicalMedicine ; 39: 101054, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34368662

RESUMO

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in a spectrum of clinical presentations. Evidence from Africa indicates that significantly less COVID-19 patients suffer from serious symptoms than in the industrialized world. We and others previously postulated a partial explanation for this phenomenon, being a different, more activated immune system due to parasite infections. Here, we aimed to test this hypothesis by investigating a potential correlation of co-infection with parasites with COVID-19 severity in an endemic area in Africa. Methods: Ethiopian COVID-19 patients were enrolled and screened for intestinal parasites, between July 2020 and March 2021. The primary outcome was the proportion of patients with severe COVID-19. Ordinal logistic regression models were used to estimate the association between parasite infection, and COVID-19 severity. Models were adjusted for sex, age, residence, education level, occupation, body mass index, and comorbidities. Findings: 751 SARS-CoV-2 infected patients were enrolled, of whom 284 (37.8%) had intestinal parasitic infection. Only 27/255 (10.6%) severe COVID-19 patients were co-infected with intestinal parasites, while 257/496 (51.8%) non-severe COVID-19 patients were parasite positive (p<0.0001). Patients co-infected with parasites had lower odds of developing severe COVID-19, with an adjusted odds ratio (aOR) of 0.23 (95% CI 0.17-0.30; p<0.0001) for all parasites, aOR 0.37 ([95% CI 0.26-0.51]; p<0.0001) for protozoa, and aOR 0.26 ([95% CI 0.19-0.35]; p<0.0001) for helminths. When stratified by species, co-infection with Entamoeba spp., Hymenolepis nana, Schistosoma mansoni, and Trichuris trichiura implied lower probability of developing severe COVID-19. There were 11 deaths (1.5%), and all were among patients without parasites (p = 0.009). Interpretation: Parasite co-infection is associated with a reduced risk of severe COVID-19 in African patients. Parasite-driven immunomodulatory responses may mute hyper-inflammation associated with severe COVID-19. Funding: European and Developing Countries Clinical Trials Partnership (EDCTP) - European Union, and Joep Lange Institute (JLI), The Netherlands. Trial registration: Clinicaltrials.gov: NCT04473365.

11.
PLoS Pathog ; 15(7): e1007870, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31260501

RESUMO

Naturally acquired clinical immunity to Plasmodium falciparum is partly mediated by antibodies directed at parasite-derived antigens expressed on the surface of red blood cells which mediate disease and are extremely diverse. Unlike children, adults recognize a broad range of variant surface antigens (VSAs) and are protected from severe disease. Though crucial to the design and feasibility of an effective malaria vaccine, it is not yet known whether immunity arises through cumulative exposure to each of many antigenic types, cross-reactivity between antigenic types, or some other mechanism. In this study, we measured plasma antibody responses of 36 children with symptomatic malaria to a diverse panel of 36 recombinant proteins comprising part of the DBLα domain (the 'DBLα-tag') of PfEMP1, a major class of VSAs. We found that although plasma antibody responses were highly specific to individual antigens, serological profiles of responses across antigens fell into one of just two distinct types. One type was found almost exclusively in children that succumbed to severe disease (19 out of 20) while the other occurred in all children with mild disease (16 out of 16). Moreover, children with severe malaria had serological profiles that were narrower in antigen specificity and shorter-lived than those in children with mild malaria. Borrowing a novel technique used in influenza-antigenic cartography-we mapped these dichotomous serological profiles to amino acid sequence variation within a small sub-region of the PfEMP1 DBLα domain. By applying our methodology on a larger scale, it should be possible to identify epitopes responsible for eliciting the protective version of serological profiles to PfEMP1 thereby accelerating development of a broadly effective anti-disease malaria vaccine.


Assuntos
Antígenos de Protozoários/imunologia , Plasmodium falciparum/imunologia , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/imunologia , Sequência de Aminoácidos , Anticorpos Antiprotozoários/sangue , Variação Antigênica , Antígenos de Protozoários/genética , Pré-Escolar , Epitopos/genética , Epitopos/imunologia , Membrana Eritrocítica/imunologia , Membrana Eritrocítica/parasitologia , Feminino , Humanos , Lactente , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Masculino , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Alinhamento de Sequência
12.
J Clin Invest ; 129(10): 4523-4538, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31361601

RESUMO

Streptococcus pneumoniae (Spn) is a common cause of respiratory infection, but also frequently colonizes the nasopharynx in the absence of disease. We used mass cytometry to study immune cells from nasal biopsy samples collected following experimental human pneumococcal challenge in order to identify immunological mechanisms of control of Spn colonization. Using 37 markers, we characterized 293 nasal immune cell clusters, of which 7 were associated with Spn colonization. B cell and CD8+CD161+ T cell clusters were significantly lower in colonized than in non-colonized subjects. By following a second cohort before and after pneumococcal challenge we observed that B cells were depleted from the nasal mucosa upon Spn colonization. This associated with an expansion of Spn polysaccharide-specific and total plasmablasts in blood. Moreover, increased responses of blood mucosal associated invariant T (MAIT) cells against in vitro stimulation with pneumococcus prior to challenge associated with protection against establishment of Spn colonization and with increased mucosal MAIT cell populations. These results implicate MAIT cells in the protection against pneumococcal colonization and demonstrate that colonization affects mucosal and circulating B cell populations.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Imunidade nas Mucosas , Mucosa Nasal , Infecções Pneumocócicas , Streptococcus pneumoniae/imunologia , Adulto , Linfócitos B/imunologia , Linfócitos B/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Feminino , Humanos , Masculino , Mucosa Nasal/imunologia , Mucosa Nasal/microbiologia , Mucosa Nasal/patologia , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/patologia
13.
Front Immunol ; 10: 136, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804940

RESUMO

Malaria infections remain a serious global health problem in the world, particularly among children and pregnant women in Sub-Saharan Africa. Moreover, malaria control and elimination is hampered by rapid development of resistance by the parasite and the vector to commonly used antimalarial drugs and insecticides, respectively. Therefore, vaccine-based strategies are sorely needed, including those designed to interrupt disease transmission. However, a prerequisite for such a vaccine strategy is the understanding of both the human and vector immune responses to parasite developmental stages involved in parasite transmission in both man and mosquito. Here, we review the naturally acquired humoral and cellular responses to sexual stages of the parasite while in the human host and the Anopheles vector. In addition, updates on current anti-gametocyte, anti-gamete, and anti-mosquito transmission blocking vaccines are given. We conclude with our views on some important future directions of research into P. falciparum sexual stage immunity relevant to the search for the most appropriate transmission-blocking vaccine.


Assuntos
Interações Hospedeiro-Parasita/imunologia , Estágios do Ciclo de Vida , Vacinas Antimaláricas , Mosquitos Vetores/imunologia , Plasmodium falciparum , Animais , Antígenos de Protozoários/imunologia , Humanos , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/imunologia , Plasmodium falciparum/patogenicidade
14.
J clin invest, v. 129, n. 10, p. 4523-4538, jul. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2858

RESUMO

Streptococcus pneumoniae (Spn) is a common cause of respiratory infection, but also frequently colonizes the nasopharynx in the absence of disease. We used mass cytometry to study immune cells from nasal biopsy samples collected following experimental human pneumococcal challenge in order to identify immunological mechanisms of control of Spn colonization. Using 37 markers, we characterized 293 nasal immune cell clusters, of which 7 were associated with Spn colonization. B cell and CD161+CD8+ T cell clusters were significantly lower in colonized than in noncolonized subjects. By following a second cohort before and after pneumococcal challenge we observed that B cells were depleted from the nasal mucosa upon Spn colonization. This associated with an expansion of Spn polysaccharide–specific and total plasmablasts in blood. Moreover, increased responses of blood mucosa-associated invariant T (MAIT) cells against in vitro stimulation with pneumococcus prior to challenge associated with protection against establishment of Spn colonization and with increased mucosal MAIT cell populations. These results implicate MAIT cells in the protection against pneumococcal colonization and demonstrate that colonization affects mucosal and circulating B cell populations.

15.
J. clin. invest. ; 129(10): 4523-4538, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17244

RESUMO

Streptococcus pneumoniae (Spn) is a common cause of respiratory infection, but also frequently colonizes the nasopharynx in the absence of disease. We used mass cytometry to study immune cells from nasal biopsy samples collected following experimental human pneumococcal challenge in order to identify immunological mechanisms of control of Spn colonization. Using 37 markers, we characterized 293 nasal immune cell clusters, of which 7 were associated with Spn colonization. B cell and CD161+CD8+ T cell clusters were significantly lower in colonized than in noncolonized subjects. By following a second cohort before and after pneumococcal challenge we observed that B cells were depleted from the nasal mucosa upon Spn colonization. This associated with an expansion of Spn polysaccharide–specific and total plasmablasts in blood. Moreover, increased responses of blood mucosa-associated invariant T (MAIT) cells against in vitro stimulation with pneumococcus prior to challenge associated with protection against establishment of Spn colonization and with increased mucosal MAIT cell populations. These results implicate MAIT cells in the protection against pneumococcal colonization and demonstrate that colonization affects mucosal and circulating B cell populations.

16.
Am J Trop Med Hyg ; 99(1): 57-64, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29692310

RESUMO

Plasmodium falciparum gametocytes develop over 9-12 days while sequestered in deep tissues. On emergence into the bloodstream, they circulate for varied amounts of time during which certain host factors might influence their further development. We aimed to evaluate the potential association of patient clinical parameters with gametocyte development and carriage via in vivo methods. Seventy-two patients were enrolled from three hospitals in the Volta region of Ghana in 2016. Clinical parameters were documented for all patients, and gametocyte prevalence by microscopy was estimated at 12.5%. By measuring RNA transcripts representing two distinct gametocyte developmental stages using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), we obtained a more precise estimate of gametocyte carriage while also inferring gametocyte maturation. Fifty-three percent of the study participants harbored parasites expressing transcripts of the immature gametocyte-specific gene (PF3D7_1477700), whereas 36% harbored PF3D7_1438800 RNA-positive parasites, which is enriched in mid and mature gametocytes, suggesting the presence of more immature stages. Linear logistic regression showed that patients older than 5 years but less than 16 years were more likely to carry gametocytes expressing both PF3D7_1477700 and PF3D7_1438800 compared with younger participants, and gametocytemia was more likely in mildly anemic individuals compared with those with severe/moderate anemia. These data provide further evidence that a greater number of malaria patients harbor gametocytes than typically estimated by microscopy and suggest a possible association between age, fever, anemia, and gametocytemia.


Assuntos
Anemia/parasitologia , Febre/parasitologia , Estágios do Ciclo de Vida/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Adolescente , Adulto , Fatores Etários , Idoso , Anemia/diagnóstico , Anemia/epidemiologia , Criança , Pré-Escolar , Feminino , Febre/diagnóstico , Febre/epidemiologia , Gana/epidemiologia , Hospitais , Humanos , Lactente , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Índice de Gravidade de Doença
17.
PLoS One ; 12(4): e0175570, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28445512

RESUMO

INTRODUCTION: HIV causes defects in memory B cells in children, but the mechanisms of those defects have not been fully elucidated. One possible mechanism is the lack of T-cell help to B cells during immune reactions. However, few studies have assessed the effect of HIV on follicular helper T cells (TFH cells) in children. METHODS: In this study, follicular-homing CD4 T cells and memory B cells were assessed in HIV-infected children and compared with children from the community. CXCR5 and CD45RO were used as markers of follicular-homing T cells and memory T cells, respectively. Memory TFH cells were identified as CD3+CD8-CD4+CXCR5+CD45RO+PD1+. Central memory T cells were identified based on CCR7 expression. Relationship between the proportions of follicular-homing CD4 T cells and memory B cells were determined in multivariable regression models. RESULTS: Highly viremic HIV-infected children had lower proportions of memory TFH cells when compared with community control children. In multivariable analyses, high proportions of memory TFH cells were associated with increased percentages of resting memory B cells after adjusting for other covariates. CONCLUSION: The impact of HIV on follicular helper T cells could influence the accumulation of memory B cells in HIV-infected children.


Assuntos
Linfócitos B/citologia , Infecções por HIV/imunologia , Memória Imunológica/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Criança , Pré-Escolar , Citometria de Fluxo , Infecções por HIV/sangue , Infecções por HIV/patologia , Humanos , Lactente , Antígenos Comuns de Leucócito/metabolismo , Leucócitos Mononucleares/citologia , Análise Multivariada , Receptores CCR7/metabolismo , Receptores CXCR5/metabolismo , Índice de Gravidade de Doença , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
18.
J Acquir Immune Defic Syndr ; 75(3): 299-307, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28346317

RESUMO

BACKGROUND: Immune modulation may improve outcome in HIV-associated cryptococcal meningitis. Animal studies suggest alternatively activated macrophages are detrimental but human studies are limited. We performed a detailed assessment of the cerebrospinal fluid (CSF) immune response and examined immune correlates of disease severity and poor outcome, and the effects of antiretroviral therapy (ART). METHODOLOGY: We enrolled persons ≥18 years with first episode of HIV-associated cryptococcal meningitis. CSF immune response was assessed using flow cytometry and multiplex cytokine analysis. Principal component analysis was used to examine relationships between immune response, fungal burden, intracranial pressure and mortality, and the effects of recent ART initiation (<12 weeks). FINDINGS: CSF was available from 57 persons (median CD4 34/µL). CD206 (alternatively activated macrophage marker) was expressed on 54% CD14 and 35% CD14 monocyte-macrophages. High fungal burden was not associated with CD206 expression but with a paucity of CD4, CD8, and CD4CD8 T cells and lower interleukin-6, G-CSF, and interleukin-5 concentrations. High intracranial pressure (≥30 cm H2O) was associated with fewer T cells, a higher fungal burden, and larger Cryptococcus organisms. Mortality was associated with reduced interferon-gamma concentrations and CD4CD8 T cells but lost statistical significance when adjusted for multiple comparisons. Recent ART was associated with increased CSF CD4/CD8 ratio and a significantly increased macrophage expression of CD206. CONCLUSIONS: Paucity of CSF T cell infiltrate rather than alternative macrophage activation was associated with severe disease in HIV-associated cryptococcosis. ART had a pronounced effect on the immune response at the site of disease.


Assuntos
Infecções por HIV/complicações , Infecções por HIV/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Meningite Criptocócica/líquido cefalorraquidiano , Meningite Criptocócica/imunologia , Infecções Oportunistas Relacionadas com a AIDS/líquido cefalorraquidiano , Infecções Oportunistas Relacionadas com a AIDS/complicações , Infecções Oportunistas Relacionadas com a AIDS/tratamento farmacológico , Infecções Oportunistas Relacionadas com a AIDS/imunologia , Adulto , Relação CD4-CD8 , Citocinas/líquido cefalorraquidiano , Infecções por HIV/líquido cefalorraquidiano , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Humanos , Síndrome Inflamatória da Reconstituição Imune/etiologia , Síndrome Inflamatória da Reconstituição Imune/imunologia , Meningite Criptocócica/complicações , Meningite Criptocócica/patologia , Estudos Prospectivos , Índice de Gravidade de Doença
19.
Sci Rep ; 7: 42989, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230186

RESUMO

IgM is the first antibody to be produced in immune responses and plays an important role in the neutralization of bacteria and viruses. Human IgM is heavily glycosylated, featuring five N-linked glycan sites on the µ chain and one on the J-chain. Glycosylation of IgG is known to modulate the effector functions of Fcγ receptors. In contrast, little is known about the effect of glycosylation on IgM binding to the human Fcµ receptor (hFCMR). In this study, we identify the Cµ4 domain of IgM as the target of hFCMR, and show that binding and internalization of IgM by hFCMR is glycan-independent. We generated a homology-based structure for hFCMR and used molecular dynamic simulations to show how this interaction with IgM may occur. Finally, we reveal an inhibitory function for IgM in the proliferation of T cells.


Assuntos
Imunoglobulina M/metabolismo , Polissacarídeos/química , Receptores Fc/metabolismo , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Endocitose , Glicosilação , Humanos , Imunoglobulina M/química , Imunoglobulina M/farmacologia , Simulação de Dinâmica Molecular , Fito-Hemaglutininas/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Fc/química , Linfócitos T/citologia , Linfócitos T/metabolismo
20.
Clin Vaccine Immunol ; 23(7): 576-85, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27170641

RESUMO

Improved HIV care has led to an increase in the number of HIV-exposed uninfected (HEU) infants born to HIV-infected women. Although they are uninfected, these infants experience increased morbidity and mortality. One explanation may be that their developing immune system is altered by HIV exposure, predisposing them to increased postnatal infections. We explored the impact of HIV exposure on the B-cell compartment by determining the B-cell subset distribution, the frequency of common vaccine antigen-specific memory B cells (MBCs), and the levels of antibodies to the respective antigens in HEU and HIV-unexposed uninfected (HUU) infants born to uninfected mothers, using flow cytometry, a B-cell enzyme-linked immunosorbent spot assay, and an enzyme-linked immunosorbent assay, respectively, during the first 2 years of life. For the majority of the B-cell subsets, there were no differences between HEU and HUU infants. However, HIV exposure was associated with a lower proportion of B cells in general and MBCs in particular, largely due to a lower proportion of unswitched memory B cells. This reduction was maintained even after correcting for age. These phenotypic differences in the MBC compartment did not affect the ability of HEU infants to generate recall responses to previously encountered antigens or reduce the antigen-specific antibody levels at 18 months of life. Although HIV exposure was associated with a transient reduction in the proportion of MBCs, we found that the ability of HEU infants to mount robust MBC and serological responses was unaffected.


Assuntos
Linfócitos B/imunologia , Exposição Ambiental , HIV/imunologia , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , ELISPOT , Feminino , Citometria de Fluxo , Humanos , Memória Imunológica , Lactente , Recém-Nascido , Subpopulações de Linfócitos/imunologia , Masculino , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...